
#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 1

Megumi Takeshita

SharkFest ’17 Europe

#sf17eu • Estoril, Portugal • 7-10 november 2017

ikeriri network serviceParkSuite Classroom
11 November 2017
11:15am-12:30pm

20 QUIC Dissection

Using Wireshark to
Understand QUIC
Quickly

supplemental files
http://www.ikeriri.ne.jp/sharkfest

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 2

Megumi Takeshita, ikeriri network service

• Founder, ikeriri network service co.,ltd

• Wrote 10+ books about Wireshark

• Reseller of Riverbed Technology (former

CACE technologies) in Japan

• Attending all Sharkfest

• Translator of QT Wireshark into Japanese

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 3

20 QUIC: Using Wireshark to Understand QUIC Quickly

In this presentation, Megumi explains the details
of QUIC, and shows you how to understand the
protocol and mechanisms involved.
Using sample trace files, Megumi will show how
to inspect and visualize QUIC traffic and explain
the advantage of QUIC in comparison with other
protocols too.

NOTE: IQUIC(IETF QUIC) is Internet-Draft and
now standardizing, so some specification may be
changed and the sample trace file is not
adequate

3

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 4

Set up environment
• For QUIC dissection, we need nightly build version of

Wireshark (this time I use 2.5.0-1547-gbe625b9b
development version)

• All supplemental files of this presentation is below
http://www.ikeriri.ne.jp/sharkfest (temporal)

http://www.ikeriri.ne.jp/sharkfest

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 5

Open simple HTTP/1.1
• open httpikeriri.pcapng of simple HTTP/1.1 packet,

• HTTP/1.1 request
response loop

• Head of Line blocking
• Rich application

needs many TCP
connection (AJAX)

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 6

HTTP/1.1 is difficult to speed up

•HTTP request have to send after previous

response has been received.
• Please input display filter in Wireshark

“http.next_request_in” (Next request in
frame in HTTP request)

• HTTP request is always waiting in one
connection. (head line blocking)

• Display filter “http” and Statistics>Flow Graph

Client

Request1

Response1

Request2

Response2

Server

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 7

HTTP/1.1 is text based, not efficient protocol

• Right click HTTP header and “follow http
stream”

• HTTP is text-based application protocol,
easy to read,
but not efficient, ambiguous, and
redundant

• HTTP messages are clear texts so they
uses more data and CPU power for
dissection.

• Many connection is separated by each
other TCP connection, they work their
own TCP rules without HTTP.

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 8

Accelerate Web service

• Wider bandwidth, Faster computing in todays internet,
then what is the protocol ?
HTTP/1.0 (RFC1945-,1996)
HTTP/1.1 (RFC2068-,1997)

• New generation of web protocol comes
HTTP/2.0 (RFC7540-,2015) former SPDY
Google, Facebook, Twitter, Yahoo, and major website
using Chrome, Edge, Safari and major browser

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 9

www.twitter.com with HTTP/2.0

• Set SSLKEYLOGFILE variable to decrypt
SSL/TLS

• Open Chrome URL “chrome://flags/” and
disable QUIC protocol in list box,
now Chrome prefer to use HTTP2

• Start capture and open www.twitter.com,
type chrome://net-internals/#http2
you can see the HTTP/2 sessions

• This time open twitter.pcapng and
set (Pre)-Master-Secret log filename
Twitter_unencrypted_premaster_secret.txt
in SSL preference

http://www.twitter.com/

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 10

HTTP/2.0 uses binary frame with Huffman coding
compression in a SSL/TLS connection

• Set “http2.header” in display filter and
check the #14

• The packet contains EthernetII,
IPv4, TCP, SSL, and HTTP2 header

• HTTP/2.0 uses binary frame with
Huffman coding,
check packet bytes pane

HTTP/1.1 semanticsApplication

HTTP/2.0Session

Session SSL/TLS

Transport TCP

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 11

Connection process of HTTP/2.0

• Click Statistics > Flow Graph and check connection
process of HTTP/2.0

• HTTP/2.0 needs TCP 3 way handshake
that contains 1 RTT(round trip time)
SYN-SYN/ACK-ACK from Client side

• HTTP/2.0 needs SSL/TLS connection
that contains 2 RTT(round trip time) from Client side
Client Hello/Server Hello-Certificate-Server Key
Exchange-Server Hello Done/Client Key Exchange
-New Session Ticket(TLS)-Change Cipher Spec-
Finished at the first time

• We need TCP 1 and SSL/TLS 2 RTT at the first time

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 12

HTTP/2.0 Stream mechanism

Web
browser

server

1 tcp connection

used by HTTP/2.0

HTTP/2.0 request
Binary frame

HTTP/2.0 response

Binary frame

Stream

(id 1)

HTTP/2.0 request
Binary frame

HTTP/2.0 response

Binary frame

Stream

(id 2)

HTTP/2.0 uses 1 tcp connection and many Stream

(virtual connection channel) that has id and priority

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 13

HTTP/1.1

Multiple HTTP connections (at the first time)

SYN

ACK

SYN/ACK

TCP connection

1 RTT

Client Hello

Server Hello-Certificate-Server
Key Exchange-Server Hello Done

SSL/TLS1.0 connection

1 RTT

Client Key Exchange
-Change Cipher Spec-Finished

SYN

ACK

SYN/ACK

TCP connection

1 RTT

HTTP/2.0

GET / HTTP/1.1

X many

times

1 RTT

New Session Ticket
Change Cipher Spec-Finished

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 14

GQUIC

• Google creates proprietary protocol, QUIC (Quick UDP
Internet Connection) (a.k.a. GQUIC)

• GQUIC omits TCP, SSL/TLS and HTTP/2.0 and
provides a monolithic mechanism of TCP + SSL/TLS
authentication and encryption + HTTP/2 multiplexing and
compression in UDP stream

• Already used in Google service (Gmail, YouTube,…)

• QUIC needs just 1-RTT at the first time,
and no RTT (0-RTT) when we connect again (if resumption
successes)

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 15

imfeelinglucky.pcapng
• Open imfeelinglucky.pcapng, it is the packet that

just I pushed I’m feeling lucky button at google using Chrome

• At this time we just see some UDP streams of QUIC

• Open the Chrome and type chrome://net-internals/#quic
you can see current
QUIC sessions

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 16

Check GQUIC packets
• Check header encapsulation (Ethernet II, IP, UDP, and QUIC) and payloads

are encrypted

• This is not a first connection, so it immediately starts data transaction (0-RTT)
because we can see SH(Short Header) at Header Form field.

• 64-bit packet number is used as a part of nonce. Each endpoint uses a
separate packet number, that is increasing.

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 17

IQUIC (IETF Quick UDP Internet Connection)

• Now IETF standardize IETF QUIC (a.k.a. IQUIC)

• IQUIC also provides a monolithic mechanism of TCP
reliable transport + SSL/TLS1.3 authentication and
encryption + HTTP/2 multiplexing and compression

• Now Internet-Draft (October13, 2017)
https://tools.ietf.org/html/draft-ietf-quic-transport-07

• Data tracker (IETF) https://datatracker.ietf.org/wg/quic

https://tools.ietf.org/html/draft-ietf-quic-transport-07
https://datatracker.ietf.org/wg/quic

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 18

IETF QUIC standards

• Internet-Draft (October, 2017)
https://tools.ietf.org/html/draft-ietf-quic-transport-07

• Working Group
https://github.com/quicwg

Core specification

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 19

IETF QUIC standards

• QUIC-TLS (October, 2017)
https://tools.ietf.org/html/draft-ietf-quic-tls-07

Using TLS in QUIC

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 20

Open sample packets of IETF QUIC

• Open quic_ietf_draft05_ngtcp2.pcapng using Wireshark
(Thank you Alexis-san for dissector and sample pcap file)

• View> Coloring rules…, new rule name: UDP source port 443,
set filter udp.srcport==443, and set pink color at background

• Blue color is from Client and Pink is from Server

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 21

Long header of QUIC
• Click #1 packet and check QUIC header format

64-bit random
connection ID
from the client

Long headers are used for negotiation

and establishment of 1-RTT keys

Once both conditions are met, a sender

switches to send short header

Stream is the same mechanism of HTTP/2.0 stream, and
Stream ID 0 is reserved for cryptographic handshake (TLS1.3)

64-bit packet number is used as pa art of nonce. Each
endpoint uses a separate packet number, that is increasing.

Packet type indicates the frame type of QUIC

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 22

Packet Type (October, 2017)
type Name Explanation

0x01
Version
Negotiation

Server sends this type packet for not supporting client’s version (Long header)

0x02 Client Initial Client sends this type packet for initializing handshake (Long Header)

0x03
Server
Stateless Retry

Server sends this type packet as cryptographic handshake message and ACK for
requiring a new Client Initial packet (Long Header)

0x04
Server
Cleartext

Server sends this type packet as cryptographic handshake message and ACK that
contains server chosen connection ID and randomized packet number with STREAM,
PADDING, ACK. (Long Header)

0x05
Client
Cleartext

Client sends this type packet as the receipt of Server Cleartext message, Client
Cleartext contains Server selected connection ID and incremented packet number of
Client Initial with STREAM, PADDING, ACK. (Long Header)

0x06
0-RTT
Protected

Packets that are protected with 0-RTT keys are sent with Long Header; all packets
protected with 1-RTT keys are sent with Short Header.
Packets protected with 0-RTT keys use a type value of 0x06. The connection
ID field for a 0-RTT packet is selected by the client.

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 23

connection ID / packet number

• Click connection ID field, right click and “Apply as column” (same as
packet number) in #1 packet, and check the changes of both

• Server set 64-bit the random connection ID in #2 packet, Client updates
the connection ID as the same number

• Packet number is set randomly (0 and 2^31-1) and used as a part of
nonce. Each endpoint uses a separate packet number, that is increasing

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 24

Stream ID (encrypted in Short Header)

• IQUIC packet has a 32-bit
STREAM id for multiplexing
many data connections.

• Clients use odd-number,
Server use even-number,
0 is reserved for cryptographic
Handshake (usually TLS connection)

• IQUIC stream mechanism is almost
the same as HTTP/2.0(also as TCP)

• Stream change the state,
Many streams in a UDP connection

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 25

Short header of QUIC
• Click #5 packet and check QUIC IETF header

64-bit random
Server chosen
connection ID

The short header can be used after the version and 1-RTT keys are negotiated.

Every time that a new set of keys is used for
protecting outbound packets, the KEY_PHASE

bit in the public flags is toggled.

Set 0 : Connection ID field is omitted
Set 1 : Connection ID field is present

64-bit packet number is used as pa art of nonce. Each
endpoint uses a separate packet number, that is increasing.

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 26

How to negotiate and install
session key in IQUIC

• IQUIC is learned from SSL/TLS to install session
key, but how do QUIC install session key at the
first time (1-RTT) and at resumption (0-RTT)

• Open tls10ikeriri.pcapng to remember how to
negotiate and install session key in TLS1.0

• tls10ikeriri.txt is a PEM format certification file
with server’s private key

• Set RSA key list in SSL preference of Wireshark

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 27

Open tls10ikeriri.pcapng and
set RSA key list (tls10ikeriri.txt)

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 28

Encrypted pre-
master secret

Key creation process of TLS1.0

Client Hello

Server Hello-Certificate-Server
Key Exchange-Server Hello Done

Client Key Exchange
-Change Cipher Spec-Finished

New Session Ticket (TLS)
Change Cipher Spec-Finished

Root CA
cert

Root CA
Public Key

Server
cert

Server
Public Key

Server
Private Key

Check server cert

Server
cert

Server
Public Key

Client Nonce
(Random)

Encrypt Premaster secret

Encrypted pre-
master secret

unencrypted pre-
master secret

Decrypt encrypted Premaster

secret

Master secret

MAC secret Session Key

Master secret

MAC secret Session Key

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 29

Filter “ssl” and check the each TLS packet

• Check packet #6 and expand Client Key Exchange

Client send
Encrypted
PreMaster
Secret after
negotiated
with Server

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 30

TLS1.0/1.2 needs 2 RTT at the first connection

SYN

ACK

SYN/ACK

TCP connection

1 RTT

Client Hello

Server Hello-Certificate-Server
Key Exchange-Server Hello Done

SSL/TLS1.0 connection

1 RTT

Client Key Exchange
-Change Cipher Spec-Finished

HTTP/2.0

1 RTT

New Session Ticket
Change Cipher Spec-Finished

• Old TLS needs 2 RTT
at the fist connection

• It is not use for QUIC
1RTT connection

• Another way to
negotiate and install
session key….

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 31

TLS1.3 Internet Draft 21

• New TLS protocol since 2014 now Internet-Drafts
https://tools.ietf.org/html/draft-ietf-tls-tls13-21

• Stronger (few cleartext) and Faster (few packet)

• New encryption / authentication

• No SessionID, No Ticket, use PSK
No Change Cipher Spec,
No Client Key Exchange,

• 1-RTT at first time, 0-RTT when we connect again

https://tools.ietf.org/html/draft-ietf-tls-tls13-21

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 32

Sample trace of TLS1.3

• Open sample trace file sip.pcap from Wireshark Wiki
sip-tls-1.3-and-rtcp.zip SIP call over TLS 1.3 transport
with enabled RTCP. Used openssl 1.1.1 prerelease
version (https://wiki.wireshark.org/SampleCaptures)

• Open sip.pcap and filter ssl in Display Filter

• Statistics > Flow Graph and set Displayed Packet
to see the 1-RTT full handshake of TLS1.3

https://wiki.wireshark.org/SampleCaptures?action=AttachFile&do=get&target=sip-tls-1.3-and-rtcp.zip
https://github.com/openssl/openssl/commit/bdcacd93b14ed7381a922b41d74c481224ef9fa1
https://wiki.wireshark.org/SampleCaptures

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 33

Open sip.pcapng and filter ssl and create Flow Graph

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 34

TLS1.3 1-RTT handshake

There are no Client Key
Exchange, no Change Cipher
Spec packet, and the
encryption starts after
Server Hello

The other handshake is
encrypted using PSK (Pre
Shard Key).

Client send Application data
after receiving Server packet

It needs just 1 Round trip
time from Client side

SYN

ACK

SYN/ACK

TCP connection

1 RTT

Client Hello

Server Hello, Application Data…

TLS1.3 handshake

1 RTT

(Application Data…)
The other handshake is

encrypted
(Encrypted Extension / Server

Configuration / Certificate /
Certificate Verify / Finished)

Finished, Application Data

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 35

Client Hello
(contains former Client Key Exchange, Change Cipher Spec)

Extension: psk_key_exchange_modes (len=2)

Type: psk_key_exchange_modes (45) Length: 2

PSK Key Exchange Modes Length: 1

PSK Key Exchange Mode: PSK with (EC)DHE key establishment (psk_dhe_ke) (1)

Extension: key_share (len=71)

Type: key_share (40) Length: 71

Key Share extension

Client Key Share Length: 69

Key Share Entry: Group: secp256r1, Key Exchange length: 65

Group: secp256r1 (23)

Key Exchange Length: 65

Key Exchange: 04f145e0e15072f4983d04be08c7886c598af98607204dd0...

Extension: certificate_authorities (len=40)

Type: certificate_authorities (47) Length: 40

Distinguished Names Length: 38

Distinguished Names (38 bytes)

Set PSK Key
Exchange Mode

Set Key Share
settings

Send Key Exchange Data

Send certificate authorities

Send Client Nonce

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 36

Server Hello
(contains former Change Cipher Spec)

Handshake Protocol: Server Hello

Handshake Type: Server Hello (2)

Length: 111

Version: TLS 1.3 (draft 21) (0x7f15)

Random: 8f3a63a080b3c1ae2b3192c76574d4f28afdb1f123a68f81...

Cipher Suite: TLS_AES_256_GCM_SHA384 (0x1302)

Extensions Length: 73

Extension: key_share (len=69)

Type: key_share (40)

Length: 69

Key Share extension

Key Share Entry: Group: secp256r1, Key Exchange length: 65

Group: secp256r1 (23)

Key Exchange Length: 65

Key Exchange: 04110e96ae58d23b968ebb7fd9075d83348733a622013785...

TLSv1.3 Record Layer: Application Data Protocol: sip.tcp

Determined
Auth/Encryption

Set Key Share
settings

Send Server Nonce

Send Key Exchange Data

The others are encrypted

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 37

TLS1.3 in IETF QUIC
• Let’s go back to quic_ietf_draft05_ngtcp2.pcapng

• Check #1 packet of Client Initial (including Client Hello)
Extension: quic_transport_parameters
Extension: psk_key_exchange_modes
Extension: key_share

• Check #2 packet of Server Cleartext (including Server Hello)
Extension: key_share

• #3 (Server Cleartext) and #4(Client Cleartext) is encrypted
with application data (http-over-tls)

0x04 Server Cleartext
Server sends this type packet as cryptographic handshake message and ACK that contains server chosen connection
ID and randomized packet number with with STREAM, PADDING, ACK. (Long Header)

0x05 Client Cleartext
Client sends this type packet as the receipt of Server Cleartext message, Client Cleartext contains Server selected
connection ID and incremented packet number of Client Initial with STREAM, PADDING, ACK. (Long Header)

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 38

Client Hello/ Server Hello of IQUIC

Set Key Share
settings

Send Key Exchange Data The others are encrypted

Set PSK Key
Exchange Mode

Send Server Nonce

Send Client Nonce

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 39

Short header transaction
• Check #5- packets with Short Header of IQUIC

• The short header can be used after the version and 1-RTT
keys are negotiated.

• Transactions are independent and based on IP/UDP

• Next time Client try to use 0-RTT way.

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 40

Comparizon between HTTP/1.1
HTTP/2.0 and IETF QUIC

Client Hello

Server Hello, Application Data…

IETF QUIC handshake

1 RTT

(Application Data…)
The other handshake is

encrypted
(Encrypted Extension / Server

Configuration / Certificate /
Certificate Verify / Finished)

Finished, Application Data

ACK

SYN/ACK
1 RTT

Client Hello

Server Hello-Certificate-Server
Key Exchange-Server Hello Done

HTTP/2.0 with SSL/TLS

1 RTT

Client Key Exchange
-Change Cipher Spec-Finished

1 RTT

New Session Ticket
Change Cipher Spec-Finished

SYN
SYN

ACK

SYN/ACK

HTTP/1.1

1 RTT

GET / HTTP/1.1

X many

times

#sf17eu • Estoril, Portugal Quick Dissection Using Wireshark to Understand QUIC Quickly 41

Use Wireshark

どうもありがとうございました！

